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ABSTRACT

Enabling rapid feature delivery is essential for product success and

is therefore a goal of software architecture design. But how can we

determine if and to what extent an architecture is “good enough” to

support feature addition and evolution, or determine if a refactoring

effort is successful in that features can be added more easily? In

this paper, we contribute a concept called the Feature Space, and a

formal definition of Feature Dependency, derived from a software

project’s revision history. We capture the dependency relations

among the features of a system in a feature dependency structure

matrix (FDSM), using features as first-class design elements. We

also propose a Feature Decoupling Level (FDL) metric that can be

used to measure the level of independence among features. Our

investigation of 17 open source projects shows that files within each

feature space are much more likely to be changed together, hence

each feature space forms ameaningfulmaintainable unit that should

be treated separately. The data also show that the history-based

FDL is highly correlated a structure-based maintainability metric:

Decoupling Level (DL). When we examine a project’s evolution

history, we see that if a system is well-modularized, it is more likely

that features can be added independently. For shorter periods of

time, however, FDL and DL may not be consistent, e.g., when the

addition of new features deviates from the designed architecture or

does not involve parts of the system that have architecture flaws.

In such cases, FDL and FDSM can be used to monitor potential

architecture degradation caused by improper feature addition.
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1 INTRODUCTION

Being able to add features quickly to a software project is essen-

tial for companies and is one of the most important objectives of

software architectural design. Meyer proposed the now-famous

open-closed principle [7]: “software entities (classes, modules, func-

tions, etc.) should be open for extension, but closed for modification."

A highly extensible and maintainable software architecture should

allow features to be added without extensive ripple effects. The

problem is, how can we tell if and to what extent features are actu-

ally independent? Without a quantitative measure, it is hard to tell

if an architecture is “good enough” to support feature delivery, if a

refactoring effort is needed, or whether a refactoring was successful

(so that adding features became easier).

There has been significant research on feature identification [1, 2]

and localization [6, 15, 16, 22, 27] at the source-code level, but not

on the dependencies among features as evidenced by a project’s

revision history, which reflects the actual difficulty of maintaining

features. Feature delivery velocity is increasingly used as a produc-

tivity measure, but without quantitative measurement and deeper

understanding of the interaction between architecture and features,

it is difficult to manage and compare feature delivery velocity over

time and across projects.

Given the lack of a widely accepted definition of feature, we pro-

pose a concept called a Feature Space, and define Feature Dependency

based on evolution history. We visualize the dependency relations

among a system’s features using a Feature Dependency Structure

Matrix (FDSM), in which features are the first-class elements. We

also propose a Feature Decoupling Level (FDL) metric to measure

the level of independence among features during a given period of

time, as evidenced in revision history.

Our definition of feature space is based on revision history, and

quite different from existing feature definitions [16, 22]. To evaluate

if the feature spaces we defined truly model semantically cohesive,

maintainable units, we investigated 17 well-known open source

projects, and showed that files within a feature space are the most

likely to change together, indicating that these files should be main-

tained together. For feature spaces with feature dependency, we
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demonstrated that changes to files in one feature space are likely

to cause changes to the dependent feature spaces.

Since FDLmeasures the architecture’s ability of add new features,

we further investigated the correlation between FDL and a newly

proposed maintainability metric, Decoupling Level (DL) [30], that is

based on syntactical relations among source files. The DL metric

measures the level of modularity, that is, how well a system is

decoupled into small and independentmodules. It is widely accepted

that a well-modularized system can better support the addition

and modification of features. If FDL is a valid metric, it should

quantitatively reflect this relation.

We demonstrate that, over a mature project’s history, FDL scores

are strongly correlated with DL: the higher the DL, the higher the

FDL. For shorter periods of revision history, however, these two

metrics may deviate from each other; even for well-modularized

systems, certain kinds of features may be difficult to add. On the

other hand, a system may have a low DL due to the existence of

architecture flaws, but if the flawed part is not active, or if the

addition of new features does not involve the flawed structure, it is

still possible to have a high FDL, indicating that not all structural

flaws need to be fixed. In these cases, we illustrate how one can use

these models and metrics to monitor and explore the interaction

between architecture and features, and to understand under what

circumstances an architecture can better support which types of

features.

2 FEATURE RELATED DEFINITIONS

In this section, we introduce formal definitions for the following

concepts: Feature Space, Feature Dependency, Feature Dependency

Structure Matrix (FDSM), and Feature Decoupling Level (FDL).

2.1 Feature Space

We represent each feature using a feature space (“feature" for short),

defined as a 3-element tuple:

FeatureSpace = 〈T imeSpan, F ileSet, DSMr 〉 (1)

TimeSpan is a pair of timestamps recording the dates of the first
and last commit of the feature: TimeSpan = (startDate, endDate).

FileSet is the set of all files added or modified for the feature in
a period of history: FileSet = { f1, f2, ..., fm }, wherem is the total

number of distinct files.

r is a release number, and DSMr is the snapshot of the feature in

release r , represented by a design structure matrix (DSM). In this
paper, we use Design Structure Matrix (DSM) to model the files

involved in a feature and the structural dependencies among these

files. Please note that FileSet contains all the files ever changed or
added for the feature in a give time period, but some files maybe

changed or deleted during software evolution. As a result, at a

given release, the snapshot of the feature may only contain a subset

of FileSet . Accordingly, the DSM of the same feature at different

releases may be different.

A DSM is a square matrix, its rows and columns are labeled with

the same set of design elements in the same order. Annotations in a

cell reflect dependencies between the elements on the row and the

element on the column. For example, in the DSM in Figure 1a, the

elements are files, and the “x" in cell (9,8) (circled) indicates that

file SelectStatement depends on file Selection.

Files in aDSMare clustered into a design rule hierarchy (DRH) [10,

11, 35], which identifies the independent modules and design rules [4].

A DRH has two important characteristics: 1) elements in a layer

only depend on files in the upper layers; 2) elements within the

same layer are grouped into mutually independent modules. The

DSM in Figure 1a shows a DRH with 4 layers: L1: (rc1-rc5), L2:

(rc6-rc7), L3: (rc8-16), L4: (rc17-26). We can see that files in L2 only

depend on files in L1, and files in L3 depend on files in L2 and L1.

Each layer is grouped into mutually independent modules. Taking L4

as an example, it is decoupled into 9 independent modules: (rc17),

(rc18-19), (rc20), (rc21), etc.

We derived a FeatureSpace for each feature using the project’s

revision history and issue tracking systems. As an example, Figure 2

depicts a Git commit for the Apache Cassandra project,1 showing

that this commit: 1) was made on 2011-06-15, and 2) was to imple-
ment issue CASSANDRA-2617, which is labeled as a new feature in

the project’s Jira issue tracking record. Six java files in the rectangle

were added/changed for this commit, and the two numbers in front

of each line indicate the number of LOC added and removed respec-

tively. This was the only commit related to the feature recorded in

the revision history. Using the above information, we can model

the FeatureSpace of CASSANDRA-2617 as follows:
TimeSpan: (2011-06-15, 2011-06-15).
FileSet : {CFMetaData, QueryProcessor, StatementType,

CassandraServer, ThriftValidation, SchemaLoader}.
DSMr : the DSM of this feature space in the latest release of

Cassandra can be found in Figure 1b.

If multiple commits were made for the same feature, then the

FileSet will contain the union of all involved files, and its endDate
will be the date of the last commit.

2.2 Feature Dependency

We defined the dependency relation, FSDep, among features as
a binary relation on a set of FeatureSpaces, FS . If a feature, f sy
depends on f sx , i.e. (f sy , f sx ) ∈ FSDep, this means that some files
involved in f sy already exist in f sx . In other words, when f sy is
added or modified, there may be a change to existing files in f sx ,
which was created before f sy .
For two features f sa and f sb , there are thus four possibilities:
If f sa .FileSet

⋂
f sb .FileSet = ∅, it means these two features

are mutually independent;

If f sa .FileSet
⋂

f sb .FileSet � ∅, then:

1) if f sa was commited before f sb , then f sb depends on f sa ;
2) if f sb was commited before f sa , then f sa depends on f sb ;
3) if f sb and f sa were committed together, then both (f sa , f sb )

and (f sb , f sa ) belong to FSDep.
Figure 1a depicts the feature space DSM of CASSANDRA-6561, a

feature that was committed in 2014. Its feature space has two files

(in red boxes) that were created or changed for CASSANDRA-2617 in
2011. According to our definition, feature CASSANDRA-6561 depends
on feature CASSANDRA-2617.

2.3 Feature Dependency Structure Matrix

Similar to the Design Structure Matrix (DSM) in Section 2.1, we

define a Feature Dependency Structure Matrix (FDSM) as a tuple:

1http://cassandra.apache.org/
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(a) DSM of Cassandra-6561 FeatureSpace. (b) DSM of Cassandra-2617 FeatureSpace.

Figure 1: DSMs of two Feature Spaces with structural dependencies
x: structural dependency between files

Figure 2: An Example Commit for Cassandra

< FS, FSDep >, where FS is a set of feature spaces and FSDep is the
feature dependency. A FDSM is also visualized in a square matrix,

whose columns and rows are labeled with the same set of features

in the same order. If a cell in row x , column y—i.e. cell(x ,y)—is
not empty, it means feature x depends on feature y. For example,
Figure 3 shows a FDSM formed by a subset of features in the Cassan-

dra project. The cell(4, 2) (circled) means feature CASSANDRA-6561
depends on Cassandra-2617, as we have seen above.
This FDSM is clustered using the DRH algorithm [11]. The

feature-level DRH (FDRH) in Figure 3 has four layers: L1: (rc1-

rc4), L2: (rc5-rc9), L3: (rc10-rc18) and L4: (rc19-rc22). Features in L2

only depend on the features in L1. Features in L3 depend on the

features in its upper layers: L2 and L1, but are not depended on by

any other features. L4 contains isolated features that do not have

any dependencies with any other features. According to this DSM,

features in L4 may be changed or replaced without influencing

other features. Feature modules in L3 may also change together

freely. In this paper, we call layers like L1 and L2 to be “upper layers”,

a layer like L3 to be “dependent-free layer” and a layer like L4 to be

“isolated layer”. The FDRH of a project could contain many upper

layers and one dependent-free layer, but at most one isolated layer.

Figure 3: An Example of Feature Design Structure Matrix
x: Feature Dependency

2.4 Feature Decoupling level (FDL)

DL [30] has been shown to be an effective measure of independence

among modules at the file level. It this research we modified the

algorithm slightly so that it can be applied to a feature-level DRH.

For each project, we calculated its FDL as follows:

Basic definition. #AllFts : the total number of detected features of
a project; #Fts(Mj ): the number of features in a FDRH module,Mj .

Calculation. Given a FDRH with n layers, its FDL is equal to the

sum of the FDL of all the layers:

FDL =

n∑

Li=1

FDLLi (2)

For an upper layer with k modules, we calculate its FDL as follows:

FDLLi =

k∑

j=1

[
#F ts(Mj )

#All F ts
× (1 −

#Deps(Mj )

#LowerLayer F ts
)] (3)
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where, #Deps(Mj ) is the number of features within lower layer

modules that directly or indirectly depend onMj . For a feature-level

module in upper layers, the number of other features it influences

are taken into consideration: the more feature it influences in lower

layers, the lower its FDL. Based on the definition of FDRH, a module

in upper layers must influence some features in lower layers.

For a module in the dependent-free layer, the number of features

within this module is considered. A module in this layer can be

changed without affecting other modules, but changes to the mod-

ule itself could be difficult if this module includes too many features.

Prior research in cognitive complexity [19] has shown that people

can comfortably process approximately 5 “chunks” of information

at a time. Accordingly, we consider that a module with more than 5

features would be difficult to process. Thus, for the dependent-free

layer with k modules, if k > 5, we calculated its FDL as follows:

FDLLi =

k∑

j=1

#F ts(Mj )

#All F ts
× (loд5(#F ts(Mj )))

−1 (4)

if k <= 5, we calculated its FDL as follows:

FDLLi =

k∑

j=1

#F ts(Mj )

#All F ts
(5)

For an isolated layer with k modules, we calculated its FDL as

equation 5.

Figure 4 presents 3 different FDSMs with different FDLs. The

features in Figure 4a are completely isolated from each other, hence

its FDL is 100%. Figure 4b shows a FDSM where the features are

highly coupled except for Feature 10 that could be changed easily,

and its FDL is just 10%. Figure 4c shows a FDSMwith 5 layers, and its

FDL is 50%, meaning that 50% of all the features were independent

from each other.

Please note that despite their similarities FDSM and structural

DSM (SDSM) are very different. An FDSM does not represent syn-

tactic relations among files as a SDSM does. Instead, an FDSM

only captures evolutionary dependencies and time sequence. For

example, consider feature f sa containing files { f1, f2, f3}, and fea-
ture f sb that was added after f sa , containing files { f4, f5}. Since
these two features do not share files, they appear to be mutually

independent in a FDSM. However, it is possible that f4 calls f1, a
syntactic relation that links f sa with f sb , but is not reflected in
the FDSM. It is possible that when f1 in feature f sa is changed, f4
in f sb also has to be changed. However, as we demonstrate later,
even if a FDSM does not represent syntactic relationships among

features, it represents their fundamental (semantic) relationship:

files within the same feature indeed change together far more often

than files not within the same feature, showing that a FDSM reveals

meaningful feature-level modules.

3 EVALUATION

To evaluate these concepts, we studied the following research ques-

tions, using a corpus of 17 open source projects as our empirical

base. We have created a set of tools to support our evaluation, in-

cluding programs that take a system’s revision history, issue tickets,

and a snapshot of its source code as inputs, and generate FDSMs

and DSMs for each feature space of each project. We use Titan [36]

to visualize and cluster FDSMs.

RQ1: Do files contained in a feature space form a seman-

tically meaningful group in that they are changed together

more often?

To measure the ease of adding new features into a system, we

define a feature space to contain files that were committed together

to resolve issues labeled as “new feature”. But we need to understand

if this simple definition is adequate. For example, it is possible that,

as software evolves, files are added to a feature, but such commits

are not labeled as “new features". In this case, the newly added files

will be missing from our feature space.

The question is, can our (relatively simple) feature space model

capture file groups that are meaningful and useful to developers? If

the answer to this question is yes, then each feature space can form

a maintainable unit and should be treated separately. For example,

maintenance tasks for each feature can be assigned to different

teams, and if there is a bug in a feature, developers can examine

the corresponding feature space—identifying potentially implicated

files—to aid in debugging.

RQ2: Are feature spaces that depend on each other more

likely to change together?

Similarly, if the answer to this question is positive, it means

that FDSMs have the potential to help developers better maintain

and debug features: if two features depend on each other and are

frequently changed together, when one feature changes, the devel-

opers can use FDSMs to figure out which other features (and hence

files) are also likely to be changed.

RQ3: Is FDL consistent with architectural maintainability

metrics?

It is widely accepted that a better-modularized system should be

easier to maintain. And, more importantly, a better-modularized

system should make it easier to add or modify features. Mo et

al. [30] has shown that DL can reliably reflect the modularity level

of a software system. If FDL faithfully reflects the ease of adding

features then it should align with architectural quality measures.

We investigate this question by exploring the correlation of FDL—a

history measure—and DL—a structural measure.

RQ4: Is it possible for a well-modularized system to have

a low FDL, or for a seemingly poorly modularized system to

have a high FDL?

Several of our industrial collaborators have complained that

sometimes a system appears to have “good quality” as measured by,

for example, coupling and cohesion metrics, but can still be difficult

to understand and maintain. It would be interesting to see if there

are similar phenomena in open source projects.

Since the ultimate purpose of architectural design and refactoring

is to ease feature delivery (rather than improving metrics) if this

divergence does occur, it is important to understand the reasons so

that the architecture can be further improved. We demonstrate how

to use FeatureSpace, FDL and FDSM to explore feature/architecture

evolution and interaction.

3.1 Subjects

To answer the above research questions, we selected 17 open source

projects as subjects.We chose these projects because they have

different sizes, lengths of history and domains, and have evolved

for significant periods of time. Moreover, these projects are well
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(a) All features are isolated:

FDL=100%

(b) All features are highly coupled:

FDL=10%

(c) Some features are coupled and form

a FDRH of 5 layers: FDL=50%

Figure 4: Three different FDSMs
x: Feature Dependency

managed; for example, features are labeled separately from other

types of issues. Table 1 presents our subject projects. Table 2 reports

the statistics of the feature spaces for each project, and the last row

shows the average for each column.

Table 1: Basic facts of the subjects

Subjects Rel. #Files #Mons #Com. LOC

Activemq 5.13.3 1235-4120 124 9241 138-404k

Avro 1.7.7 156-444 52 1383 41-178k

Camel 2.12.4 1838-9866 84 16715 111-764k

Cassandra 2.1.2 311-1337 66 15330 45-249k

CXF 3.0.9 2861-6011 93 8937 315-709K

Flink 1.0.2 1728-3210 22 8799 190-444k

GeoTools 13.6 6328-7748 59 4906 768-1013k

Hibernate 4.3.11 4780-7335 73 5675 394-568k

Hive 1.2.1 511-3897 79 6889 142-753k

Mahout 0.11.1 455-1213 80 3424 33-125k

Nutch 2.3.1 376-438 101 2034 58-147k

OpenJPA 2.4.0 1266-4457 100 4729 195-494k

PDFBox 1.8.9 447-799 73 3664 49-121k

Pig 0.15.0 594-1638 74 2754 95-369K

Spring 3.2.16 3253-4920 73 11522 278-493k

Tika 1.8 131-653 94 2497 10-79k

Wicket 6.19.0 1879-3081 98 18373 127-279k

Rel.: latest release number; #Files: range of file count;

#Mons: evolution time in months; #Com.: total number of commits;

LOC: range of LOC between the first and last releases.

3.2 Feature Space as Maintainable Unit

To answer the first research question, we quantify how frequently

two fileswere changed together in the revision history using cochanдe:

when two files A and B were changed together in one commit, we

consider that their cochanдe(fa , fb ) is 1. The higher the value of
cochanдe(fa , fb ), the more frequently these two files were changed
together. For files within a feature space, FSk , we calculated how
frequently each pair changed together and the average:

avд_CC_FSk = 1/n×
∑n
i

∑n
j cochanдe(fi , fj )/n, where fi , fj are

files involved in FSk , i � j, n is the number of files involved in FSk
and n >= 2.

For each file in FSk , we also calculated how frequently it was

changed with files in the other feature spaces:

Table 2: Feature Space Summary for each project

Subjects #FS #Files.Dist FS.Size #InCom.

ActiveMQ 195 1450 11.5 2.1

Avro 83 301 7.2 1.3

Camel 557 4396 11.4 2.8

Cassandra 232 578 7.3 1.6

CXF 134 1150 10.8 3.5

Flink 74 880 14.9 3.2

GeoTools 66 744 14.7 1.8

Hibernate 106 3230 38.1 2.6

Hive 318 1548 10.7 1.1

Mahout 82 579 8.9 2.1

Nutch 40 201 9.3 1.7

OpenJPA 78 804 16.2 3.4

PDFBox 40 201 5.9 2.5

Pig 112 784 10.5 1.3

Spring 214 1120 8.8 2.4

Tika 101 294 6.2 3.5

Wicket 100 1458 17.6 2.1

Average 149 1160 12.3 2.3

#FS: the number of feature spaces;

#Files.Dist: the number of distinct files of all feature spaces;

FS.Size: average number of files in a feature space;

#InCom.: average number of commits made for each feature

avд_CC_nFSk = 1/n ×
∑n
i

∑m
j cochanдe(fi , fj )/m, where fi is

inside FSk , fj is a file involved in other feature spaces, n is the
number of files in FSk ,m is the total number of files in other feature

spaces.

Table 3 reports the average of all avд_CC_FSk values (aaCC) and
the average of all avд_CC_nFSk (aaCCn) values for each project.
These results show that aaCC is much higher than aaCCn over all
projects, indicating files within a feature space change together

more frequently.

To be more rigorous, we used theWilcoxon signed-rank test, a

non-parametric statistical hypothesis test for comparing two re-

lated samples, to compare whether the avд_CC_FSk is significantly
larger than the avд_CC_nFSk over all features for each project.

The tests on all of the subject projects have P-values less than 0.01.

We can thus conclude that each feature space captures a group of

highly evolutionarily coupled files, which form a maintainable unit.

The implication is that files in a feature space have a high likelihood
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Table 3: aaCC vs aaCCn for each project

Project aaCC aaCCn Project aaCC aaCCn

ActiveMQ 3.221 0.039 Mahout 2.515 0.069

Avro 2.707 0.165 Nutch 1.654 0.079

Camel 1.969 0.013 OpenJPA 2.038 0.024

Cassandra 11.104 0.467 PDFBox 2.340 0.145

CXF 2.347 0.016 Pig 1.725 0.059

Flink 1.503 0.023 Tika 1.815 0.081

GeoTools 1.229 0.004 Spring 2.102 0.013

Hibernate 1.223 0.011 Wicket 1.726 0.036

Hive 5.928 0.132 - - -

of being changed together in the future. When a file in a feature

space is changed, developers can effectively identify other potential

changes by examining the feature space.

As an example, figure 5 depicts a DSM with both structure and

history relations among files in the Cassandra-6561 feature space.
The number in a cell, which we call “co-change”, indicates how

many times the file on the row and the file on the column have

changed together in a period of history. From the large co-change

numbers in the cells we can tell that files within this feature space

have changed together very often in the project’s history.

Figure 5: DSM of Cassandra-6561 with structural and

evolutionary dependencies
x: structural dependency between files, number: co-changes

3.3 Dependent Features

To answer the second research question, we first quantify how

frequently two features, FSa and FSb , were changed together. We
calculated the average cochanдe between their involved files as
follows:

aCC(FSa , FSb ) = 1/n×
∑n
i

∑m
j cochanдe(fi , fj )/m, where fi and

fj are the file involved in FSa and FSb , n andm are the number of

files in FSa and FSb respectively.
For each of the dependent features, FSk , we calculated the aver-

age cochanдe among their files as follows:
FSk_Dep_aCC = 1/m×

∑m
i aCC(FSk , FSi ), wherem is the num-

ber of features depended by FSk , FSi is a feature depended by

FSk . There are shared files among dependent features, to avoid
biased results from the co-changes between the shared files and

other files, we excluded the co-changes involving shared files in

our calculation.

For independent features:

FSk_NDep_aCC = 1/n×
∑n
i aCC(FSk , FSi ), where n is the num-

ber of features independent to FSk .
Table 4 reports the average of all FSk_Dep_aCC values (daaCC)

and the average of all FSk_NDep_aCC (daaCCn) values for each
project. These results demonstrate that daaCC is much higher than

daaCCn over all projects, which indicates that a feature’s files were
changed together with its dependent feature’s files more often.

Table 4: daaCC vs daaCCn for each project

Project daaCC daaCCn Project daaCC daaCCn

ActiveMQ 1.40 0.44 Mahout 1.60 0.19

Avro 1.43 0.51 Nutch 0.43 0.22

Camel 0.68 0.10 OpenJPA 0.48 0.21

Cassandra 7.13 5.04 PDFBox 1.12 0.56

CXF 0.92 0.08 Pig 0.77 0.30

Flink 0.60 0.13 Tika 0.78 0.34

GeoTools 0.32 0.04 Spring 0.80 0.10

Hibernate 0.35 0.17 Wicket 1.00 0.40

Hive 3.23 2.56 - - -

Again, for each project, we conducted aWilcoxon signed-rank

test to explore whether FSk_Dep_aCC is significantly larger than

FSk_NDep_aCC . We observed that all these tests show P-values

less than 0.01, indicating that files in dependent features are more

likely to change together, compared to files in mutually indepen-

dent features. The implication is that if one feature changes, the

developer can use a FDSM to check what other features might also

need to be changed.

3.4 Feature Independence and Structural
Independence

The results from the above two research questions show that files in

a feature space or in dependent features are more likely to change

together. A maintainable architecture should allow features to be

added and changed relatively independently. And it is widely ac-

cepted that a well-modularized system should be easy to maintain.

Thus, if FDL is a valid metric it should align with architectural

modularity measures.

In Mo et. al.’s work [30], the authors demonstrated that DL can

be used to compare different projects, and can indicate significant

architectural changes, such as refactoring or degradation. They also

have shown that DL could reliably reflect the level of modularity of

a software system. To evaluate if FDL is a reliable indicator of the

ease of adding and modifying features, we explored the correlation

between FDL—a pure history measure—and DL—a pure structural

measure.

For this purpose, we calculated the DL and FDL values for each

of our subject projects, as reported in Table 5. Both DL and FDL

change during the evolution of a project, so we chose to calculate

these metrics from the latest version of each project. We made this

choice because DL [30] values usually remain stable in consecutive
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releases of a project, unless there was substantial refactoring or

degradation. Based on our detailed analysis of these projects, we did

not observe any significant changes in their architectures during the

latest few releases, so the DL from the last release was determined

to be sufficiently representative in each case.

Table 5: Metric values for each project

Project DL FDL Project DL FDL

ActiveMQ 78% 52% Mahout 92% 87%

Avro 82% 63% Nutch 77% 60%

Camel 84% 68% OpenJPA 70% 53%

Cassandra 39% 16% PDFBox 47% 86%

CXF 88% 91% Pig 55% 49%

Flink 79% 65% Tika 84% 59%

GeoTools 88% 87% Spring 86% 72%

Hibernate 65% 42% Wicket 72% 65%

Hive 55% 21% - - -

For FDL values, since features can be quite different from each

other, it makes sense that FDL could fluctuate more than DL, as we

will show. In particular, it is natural that at the beginning of a project

when the architecture is not stabilized, FDL values may change

more rapidly. We deliberately chose projects that have evolved for

a long time (more than 6.5 years on average) under the assumption

that the architecture should be stable and so should the project’s

ability to support feature evolution. As a result, the FDL of the latest

version should be representative.

We conducted a Pearson Correlation Analysis between DL and

FDL. The results show the Pearson values is 0.65 and p-value is

0.004, meaning the correlated relationship is statistically signifi-

cant. The correlation of 0.65 is considered strong. However, from

Figure 6, we observed a prominent outlier: PDFBox, whose DL is

only 47%, but its FDL is as high as 86%. If we remove this outlier,

the correlation among the remaining 16 projects increases to 0.91,

indicating that, within these projects, those with higher DL (i.e.,

those that are well-modularized) also have very high FDL (features

can be added/modified more independently). In particular, all 3

projects with highest DL values (larger than 87%) also have FDL of

at least 87%, meaning that more than 87% of their features can be

maintained independently.

Figure 6: The Correlation between DL and FDL

This study shows that in general, FDL and DL are strongly cor-

related but we did find one exception. We will examine PDFBox

in detail in the next subsection to understand why this project is

special, and to understand the meaning of a divergence between

FDL and DL.

3.5 The Interaction between Architecture and
Feature Addition

The fact that PDFBox has a relatively low DL but very high FDL

triggered our curiosity to dig more into its architecture and evo-

lution history. Moreover, the discrepancy between architectural

measurement and actually maintainability happens in reality. Sev-

eral of our industrial collaborators have complained that sometimes

a system has really good quality measures as measured by, for ex-

ample, coupling and cohesion metrics, but still can be difficult to

maintain. It would be interesting to see if there are similar phenom-

ena in open source projects, and most importantly to explore when,

where, and why these discrepancies happen and how to explore

the interaction between architecture and feature addition so that

architects can make decisions about if and when the architecture

should be improved.

Next we explore why PDFBox was an outlier, and the variation

of FDL of each project to see how the ability of adding new features

changes over time. Finally, we qualitatively explain how DL, FDL,

DSM and FDSM can be used to explore the interaction between

architecture and features.

3.5.1 PDFBox. We first note that even though PDFBox has been

evolving for about 6 years, it has only 40 features recorded in its

history, whereas the average number of features for all 17 of our

subject projects are 149. In addition, the average number of files

within each feature is the smallest among the 17 projects: 5.9 vs.

the average of 12.3. We then calculated the number of files within

all PDFBox feature spaces and found that 26 out of 40 features (65%)

have just 1 or 2 files.

To further understand the architecture and features of PDFBox,

we generated the FDSM for the latest version. Based on the FDSM,

we find that the 4 largest features—with more than 10 files each—

are among the earliest features added to the system, as part of

the infrastructure. For example, the largest feature of this project,

PDFBox-572 (73 files), was added as the 5th feature. According to

its revision history: the purpose of this feature was “Upgrading

PDFBox (incl. JempBox and FontBox) to use Java 5 specifications".

Next we studied the structural DSM of PDFBox and observed

several big “blobs” that explain its relatively low DL: for example,

there is a parser in the system (which is naturally complex), and it

employed a visitor pattern to handle exceptions (which contains a

dependency cycle). Fortunately, most features added later to this

system do not involve this infrastructural code. Also, in PDFBox’s

own documentation, it states the following: “Optional dependencies:

Some features in PDFBox depend on optional external libraries. You

can enable these features simply by including the required libraries in

the classpath of your application." This optionality may explain why

the number of files of most features, extracted from co-commits, is

small.

In summary, PDFBox exemplifies the case where some parts of

the architecture are not well-modularized, but they are stable and

not involved in new features. In such a case, it is still possible to
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(a) Projects with lowest DL values (b) Projects with medium DL values (c) Projects with highest DL values

Figure 7: FDL variations

achieve a high FDL. This is consistent with the notion of architec-

tural debt [23]: even if a part of the system is not well modularized

or has a lot of code smells, as long as this part is not generating

interest, it is not a debt.

3.5.2 The Variation of FDL. The exploration of PDFBox trig-

gered another question: are there cases where the DL is very high,

but the FDL is low? Also, does FDL remain stable if the architec-

ture remain stable? To answer these questions, we first ordered the

features added to each project according to their commit time, and

then calculated the FDL values for every 5 features added. That is,

we calculated the FDL after the first 5 features were added, the first

10 features, 15 features, etc.. Finally, we presented the variations

of FDL for different projects. Figure 7 depicts several representa-

tive cases: the FDL variation for projects with lowest DL values

(Figure 7a), highest DL values (Figure 7c), and the projects in the

middle (Figure 7b).

These charts reveal the following interesting phenomena: for

projects that are extremely well modularized (high DL values), their

features are also highly independent from each other (high FDL

values), over all or most of their feature addition history. In the

projects with lowDL values, by contrast, their FDL values fluctuated

when the first set of features were added, and then stabilized at a

low level (less than 40%), or showed a steady downward trend.

The projects whose DLs are in the middle, however, experienced

ups and downs during their feature addition history. Take Hibernate

ORM as an example. This project has evolved for over 6 years, and

its FDL chart showed that its features are less and less independent

over time. We calculated the DL values of its previous snapshots,

and found that its DL decreased from 69% to 65%. For Avro and

OpenJPA, their DLs increased from 72% to 82% in 4 years, and 55%

to 77% in 8 years respectively. We can see fluctuating but upward

trends for both projects. The FDL of AVRO is higher than that of

OpenJPA most of the time, which is consistent with the fact that

AVRO has a higher DL in general. These charts, again, illustrate

that FDL and DL are highly correlated: they tend to increase or

decrease together.

However, even for a project with high DL, its FDL can be low

from time to time. For example, the FDL measured after the 33th

feature of AVRO is the lowest of all its history. If the measures were

taken at that time, how does one tell if the low FDL is caused by

a degrading architecture, or it is just because the system hasn’t

evolved long enough yet? Next we explore this question.

3.5.3 The Interaction of Architecture and Features. Nowwe demon-

strate how to use DSM and FDSM to explore the interaction between

architecture and features, using AVRO as an example. Figure 8a

is the feature space DSM of AVRO-512, the 29th feature added to

the system; after this feature was added, the FDL dropped to 36%.

From the DSM, we can see that this feature has 25 files, involving

multiple namespaces.

The revision log of AVROmade it clear that this feature is also an

infrastructure feature, described as “Define And Implement Mapre-

duce Connector Protocol". This feature was added in 2010, the sec-

ond year after AVRO became an Apache project. By contrast, the

features added more recently were much smaller and more inde-

pendent. Figures 8b-8e depict the feature space DSMs of 5 features

added in 2013-2014. We can see that these features are all small,

and the files were all added or changed within the same namespace.

According to their revision log, these are not infrastructure features,

and the architecture supports their addition easily.

For an architect, feature space DSMs can be used to analyze why

a FDL is decreasing, and to analyze each feature: if a feature is

naturally complex and will be part of the system’s infrastructure, it

is normal that its addition may temporarily lower the DL and FDL.

As long as the architect envisions that most new features can be

easily added in the future, this is fine. If the value of FDL indeed

increases over time, this means that the architect’s vision is correct.

By contrast, if an architect observed continuously decreasing FDL

and DL values, and most features, infrastructural or not, could

not be added independently, then this is an alarming sign that the

features are not aligned with the architecture, and the architecture

should be reevaluated.

3.6 Answers to Research Questions

Now we can answer our four research questions. For RQ1 and RQ2,

we can answer for both questions from the data: indeed the files

contained in a feature space form a meaningful group that should

be maintained together, and dependent features are likely to change

together. This result implies that FDSM could be used to monitor

the maintenance, evolution, and interaction of features. We can

also answer RQ3 and RQ4 positively and their answers complement

each other: for RQ3, the data shows that FDL is positively correlated

with DL if we examine enough evolution history: consistently high

DL scores are associated with consistently high FDL scores over

time and vice versa. On the other hand, if we examine shorter time
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(a) Avro-512 (b) Avro-1341

(c) Avro-867 (d) Avro-1274 (e) Avro-1307 (f) Avro-1319

Figure 8: Feature Space DSMs of AVRO – x: structural dependency between files

periods, even for a project with high DL, its FDL can be low from

time to time if the features added during that period happen to

be infrastructural. It is also possible for a project with low DL to

have high FDL, if the complex part of the system is not active or

changeable, or the addition of features does not involve the part

of the system that has architecture flaws. Our analysis shows that

FDL and FDSM can be used to assess the impact of adding new

features to the architecture, to examine the impact of each feature,

and to monitor if the overall architecture is degrading because of

feature additions, which can be reflected as a decreasing DL in the

long run.

4 DISCUSSION

4.1 Limitations

First, we assume that independence among features implies ease of

adding features. Of course, the actual speed of adding features may

be affected by other factors unrelated to interdependencies such

as the experience and skills of developers, time-to-market, and the

availability of resources. Thus we are not claiming that, in all cases,

the more independence among features, the faster features can be

delivered.

For similar reasons, we did not use feature delivery velocity—the

length of time between a feature being added to the issue tracking

system and when it is committed and released—of these 17 subjects

as a way of evaluating FDL. The time spent to add features is highly

influenced by the nature of project, the number of users, the number

of contributors, the maturity of project, and so forth. For example, a

project that is mature may not have many new feature commits, and

a project with relatively few contributors may take longer to add

new features. But this, by itself, does not mean that such projects

do not have the inherent capability to add features quickly. Thus

a comparison of these measures among different projects can be

meaningless, and thus these “measurements" are not qualified as

proper “metrics".

Based on our research, we believe that FDL is independent of

other factors such as user experience and project popularity, and

can be used to compare different projects, and to monitor the con-

gruence between architecture and feature addition.

4.2 Threats to Validity and Future work

First, even though we made an effort to choose projects of different

sizes, domains, and ages, we only studied 17 projects, most of which

were from the Apache open source community. Due to the limi-

tations of our evolving tool set, we can only process projects that

use SVN or Git, and all of the chosen projects were implemented

using Java. Hence we can not claim that our results are generaliz-

able to other projects implemented using different programming

languages or managed by other version control tools. Extending

the experiments to a broader set of projects is future work.

Second, most of the projects we analyzed have moderate or

high DL measures: thus we know that they have moderate or high

modularity. We tried to select more projects with lower DLs, but

they either did not have a sufficiently long evolution history, were

not active, or did not reliably distinguish features from bugs in

their revision histories. We intend to analyze more projects with

various levels of DL values in the future. However it is possible that,

because of the poor modular structure of low-DL systems, they are

not capable of supporting long-term feature addition, which could

be the reason we can not find them and collect their feature data.

Poor project management, such as not linking commits to issues,
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could be another reason. These are hypotheses that we plan to test

in the future.

Third, since we used issue tracking records to find feature IDs,

and then mined revision records to find the mapping between com-

mits and features, our results rely on the accuracy of the revision

history and issue tracking records. This is similar to many other

studies that depend on evolution history data. We thus can not

claim that our results apply to projects that are relatively new or

that have a short history record. Addressing these issues is also

part of our future work.

Forth, we consider each feature space to only contain files which

were changed in a commit labeled as “new feature”. But as software

evolves, a feature space may miss some source files which com-

mitted to implement the respective feature but not label as “new

feature”. However, as we describe earlier, each of our feature spaces

could effectively model files which forms a meaningful maintain-

able unit, meaning that files in a feature space are more likely to be

changed together.

Finally, this research is motivated by our industrial collaborators’

question: “How do we know if a refactoring is successful?" All of

our collaborators have used multiple tools to measure source code

structure, but they do not have an effective way to measure if the

ability of adding new features has increased, which is what they care

most in the end. Accordingly, applying FDL to industrial projects,

and evaluating it in longitudinal studies, is our final future goal.

5 RELATEDWORK

Feature-related Research. Various feature location techniques have

been described in [16, 22]. These papers proposed different ap-

proaches [2, 14, 29, 31] for feature location. For example, [2] col-

lected and analyzed execution traces of target features in software

based on probabilistic ranking; [29] extracted and ranked program

elements to investigate by analyzing the topology of structural

dependencies; [14] presented a tool, Hipikat, using information

retrieval techniques to identify the artifacts related to a feature.

More recently, [18] presented predicted failure-prone configura-

tions by using feature locality and historical data. Based on diff

set, [21] used two heuristics to improve the accuracy for locating

distinguishing features. Using a data fusion model, [15] combined

information retrieval, execution and link analysis algorithms to

improve feature location. Feature interaction [3, 5, 33] is where

the behavior of one feature may be affected by another feature.

Feature-based specifications were used in [3] to detect interactions

and showed that the detection approach is effective in most of the

studied systems. Feature interaction algebra was used by [5] and

they demonstrated that this approach could improve the precision

of formalizations for concepts used in software product lines.

None of these works considers the historical dependency be-

tween features. Our FDSM explicitly presents the historical de-

pendencies between features and the depended featured are more

evolutionarily coupled. Besides, our FDL has the potential to reflect

the quality of software architecture.

Metrics and Quality.Metrics have been widely studied to measure

software quality. McCabe Cyclomatic complexity [25] was proposed

in 1970s. CK metrics [13] and MOOD Metrics [17] are two suites

of metrics used for analyzing object-oriented design. These are

code-based metrics. In addition, many other measures have been

proposed, such as LOC, that can be extracted from history. These

metrics or measures have demonstrated their effectiveness in bug

prediction and localization [12, 20, 26, 28, 34]. For example, [20]

used the ranking information of each statement to assist fault lo-

cation. [26] examined different code metrics and observed that a

combination of these metrics is useful to predict defects in systems.

However, they couldn’t find a unique combination of code metrics

which is useful in all different projects.

Unlike these metrics, FDL has shown the potential to measure

how well a system can support feature addition during software

evolution. High correlation between FDL and DL suggests that the

ability to add features is rooted in architecture, not individual code

files.

Architecture Metrics. Many architectural metrics have also been

proposed to measure software quality. Propagation Cost (PC) [24]

was proposed to measure how tightly a system’s files are coupled to

each other. Independence Level (IL) [32] was proposed to measure

how many files could be decoupled into structurally independent

modules. [8, 9] have investigated system-level architecture metrics

and their correlations with the ratio of local change-sets. [37, 38]

proposed multiple coupling metrics which presented correlations

with history changes and reuse effort. Decoupling Level (DL) [30]

was proposed to measure how well a system is decoupled. However,

all these metrics only consider structural relations. FDL is derived

from revision history and reflects how well a system can support

feature addition in reality.

6 CONCLUSION

To assess, compare, and monitor the ease of adding new features to

a software system we have proposed and formally defined Feature

Space, Feature Dependency, and Feature Decoupling Level. After in-

vestigating thousands of features within 17 open source projects,

we reported that files within the same feature space, as well as files

in dependent features are much more likely to be changed together,

indicating that these feature spaces form meaningful “modules”

that should be identified so that they can be analyzed and main-

tained. We also showed that in, most cases, the FDL metric (a pure

history measure) and DL (a pure structural measure) are highly

correlated, indicating that FDL could reliably reflect architecture

maintainability.

Our study also showed that, in some rare cases a system with a

low DL can also have a high FDL. Furthermore even for systems

with high DLs, adding features may be difficult from time to time,

depending on the nature of the features, the maturity of the architec-

ture, and their interactions. Using real examples, we demonstrated

how DSMs, FDSMs, DL and FDL can be combined to analyze the

interaction between architectural structure and features, so that the

architecture can be evolved in an informed way, to better support

feature addition.
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